final.gif

Welcome!

Have you wondered about shiny objects in the night sky? So do I!

I am enthusiastic about research in the field of Astronomy and Astrophysics.

My childhood passion for research in Astrophysics, intensive studying and hard work finally paid off in 2015 when I graduated and became a qualified black hole astrophysicist.

Currently, I am working as an assistant professor at the Department of Physics, Indian Institute of Technology, Hyderabad, India.

My research mostly focusses on observational studies of exotic objects in the space like black holes, neutron stars, white dwarfs in multi-wavelength. The main goal of my research is to understand how scientific processes are responsible for producing the interactions and measurements observed through space and ground-based telescopes like Chandra, XMM-Newton, Swift, GMRT. I use a combination of approaches and technologies specially developed for use in my studies. 

Recently I am delving into new fields of research including extragalactic astrophysics, relativistic simulation, planetary science, tracking solar system objects, big data science. 

 

What I Do?

Teaching courses:

Course Title: Introduction to Astrophysics (PH6120): [Semester 1: February-May 2021] 

Conducting laboratory sessions:

Engineering Physics students [Semester 1 and 2 - 2021]

As a professional Astronomer,

I work on observations using ground and space-based telescopes in Optical, UltraViolet, X-ray and Gamma-ray bands. Using various tools on spectral and timing analysis and numerical simulation, I try to understand what happens to the matter close to the black hole before they disappear into it. My research includes data from both stellar-mass black hole (up to few tens of solar mass) in our Milkyway Galaxy as well as supermassive black holes (few tens of million solar mass) residing at the centre of galaxies, billions of miles away from us.

I am working as an instrumental team member (LAXPC) of the AstroSat mission, India's first multi-wavelength astronomical space mission by ISRO, TIFR, IUCAA, IIA, in collaboration with the University of Leicester, UK and the Canadian Space Agency, Canada.

Involved as an International Science Development Team member, Thirty Meter Telescope International Observatory, Caltech, USA, in collaboration with India, China and Japan.

 

Research Projects

Supermassive-Black-Hole.gif

Black Hole Astrophysics: probing extreme gravity with black hole X-ray echos

2018-present

The inner 30 light-minute radii of accreting supermassive black holes are revealed mostly in UV and X-rays. Among few fascinating events we observe using UV/X-ray satellites, X-ray reverberation is one where X-ray flashes occurred in a region as close as ten light-minutes away from the supermassive black hole and reflected in the accretion disc before reaching the observer. However, such an echoed light is delayed due to bending caused by the extreme gravity of the black hole.
Due to a dramatic breakthrough in developing a fully relativistic, time-dependent, ray-tracing disc reflection model, a more realistic quantitative analysis of X-ray reverberation is now possible. In this project, we compute the delay between the direct and reflected light as a function photon energy, model the X-ray spectrum and use the fitted parameter to perform simulation that agrees with the observed energy-dependent delay spectra.

Outflows from black hole systems : Radio jets and winds

2017-present

We still have only a very limited understanding of the origin of the relativistic radio-emitting jet, leaving the black hole accretion disc perpendicularly at a speed close to the speed of light. Signature of massive outflows in the form of a strong wind is also evident. The supply for the radio jet and wind comes from X-ray emitting accreting material, but exactly how? Answering questions about this is essential for understanding the energy budget very close to the event horizon.

We are using observations from two most powerful telescopes in the world: Chandra X-ray observatory and e-MERLIN radio telescope, to find out very detailed radio/X-ray connections in a large sample of black hole X-ray binaries

jet.gif
 

reach my office at

C-308/C
ACADEMIC BLOCK C
IIT HYDERABAD
KANDI
SANGAREDDY 502285

  • Facebook
  • Twitter
  • LinkedIn
  • Instagram
 

©2020 by Mayukh Pahari. All Rights Reserved.